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ABSTRACT

This study identifies and compares various reference conditions used to define float-
ing frame of reference formulations in terms of absolute interface coordinates. Trans-
forming from the generalized coordinates of the floating frame and the local elastic
coordinates describing the mode shapes to absolute interface coordinates eliminates
the need for Lagrange multipliers to incorporate kinematic constraints. If the reduc-
tion basis can describe rigid body motion (e.g. Craig-Bampton modes), inclusion of
reference conditions which eliminate the rigid body motion from the elastic deforma-
tion is required to obtain a unique coordinate transformation. Three well-established
reference conditions define the floating frame as: (1) attached to the node at the center
of mass of the undeformed body, (2) attached to an interface node and (3) a weighted
average of the variations of the absolute interface coordinates. The choice of reference
conditions impacts the accuracy and computational cost of the resulting formulation.
However, the selection is complicated by the independent derivations of the formula-
tions and the absence of comparisons between them. In this work, the result of the
derivation of the equations of motion in terms of absolute interface points are shown
for each reference condition such that the formulations differ only in the implemented
transformation matrices. As such, the relation between the reference conditions is illu-
minated. The accuracy and computational efficiency of the formulations are compared
using a variation of a three-dimensional slider crank benchmark problem, providing
an insight into their relative merits.

Keywords: Flexible multibody dynamics, Floating frame formulation, Reference
conditions, Absolute interface coordinates.

1 INTRODUCTION
Mechanical systems composed of multiple flexible bodies are studied in the field of flexible multi-
body dynamics. As the bodies are connected by joints and can therefore describe large rigid body
rotation with respect to each other, multibody systems are inherently nonlinear. The joints are
represented by kinematic constraint equations implemented at the boundary points (also called
interface points). Contrary to the movement of the global system, the flexible deformation within
one body generally remains small with respect to the dimensions of the body.

The floating frame formulation is a description of flexible multibody dynamics problems which
utilizes the assumption of small elastic deformations by assigning each body a floating frame
which moves along with the body [1]. The absolute floating frame coordinates describe the rigid
motion of each body in the system. The elastic displacement within the body is described locally
with respect to the floating frame. Since the local elastic deformation is small, and therefore
linear, it can be expressed as a superposition of mode shapes (extracted from the finite element
model of the body) and corresponding coordinates. Reduction of the generalized coordinates can
be achieved through well-established model order reduction techniques to save computation time.
As a result, the number of degrees of freedom is generally small compared to other description



methods for flexible multibody dynamics problems. As such, the floating frame formulation is the
preferred description for multibody systems undergoing small elastic deformations [2].

A disadvantage of the floating frame formulation is the complication of the kinematic constraints
due to the use of the mixed coordinate set. As the absolute boundary node coordinates are not
part of the degrees of freedom of the problem, floating frame formulations require the constraints
to be expressed in absolute floating frame coordinates and local elastic coordinates, resulting in
nonlinear expressions. Consequently, Lagrange multipliers are required to obtain the constrained
equations of motion. The resulting system of equations is of differential-algebraic form, such
that time-integration scheme’s suitable for differential-algebraic equations must be combined with
Newton-Raphson iterations to integrate the system in time.

Alternatively, an explicit transformation of the equations of motion to absolute boundary coordi-
nates would allow straightforward inclusion of the kinematic constraints, removing the need for
Lagrange multipliers and yielding constrained equations of motion in ordinary differential form.
However, to obtain this expression, transformation matrices between the absolute floating frame
coordinates and local elastic coordinates and the absolute boundary coordinates must be derived.
Such approaches are further referred to as absolute interface formulations, while approaches using
the mixed coordinates set are further referred to as classic formulations.

To define a unique transformation, the redundancy between the three coordinate sets must be
removed. The redundancy is introduced because, in the formulation as described so far, the set
of local generalized coordinates are allowed to describe rigid body motion. In fact, the definition
of the floating frame directly influences the amount of kinetic energy corresponding to the local
displacement coordinates. Therefore, six constraints referred to as reference conditions, which
remove the rigid motion from the generalized coordinates, must be introduced to obtain a unique
coordinate transformation. Note that the redundancy is present in both the classic and interface
formulations and must be accounted for in the classic formulations as well.

Two approaches to introduce the constraints can be found in literature. In the first approach, the
constraints are introduced by choosing a set of mode shapes which cannot describe rigid body
motion. By combining such mode shapes with the mean-axis or orthogonality conditions, which
result from minimization of the kinematic energy corresponding to the local displacement coordi-
nates, simplified Tisserand axes can be obtained [3, 4]. Reference conditions based on the mode
shape choice are typically developed with the aim of optimizing the classic formulation.

In the second approach, the reference conditions are six position level constraints between the
absolute floating frame coordinates and absolute interface coordinates which remove the rigid
motion from the local deformation component. In contrast to the first approach, research into this
type of reference conditions has led to the development of new formulations. These reference
conditions can be characterized into two categories: body-attached frames and moving frames
[5, 6]. In body-attached frame approaches, the floating frame is attached to a material point on the
body. A frequently employed body-attached approach is to define the floating frame as attached
to one of the boundary nodes, as developed by Cardona [7]. To prevent undesired distinction
between the boundary nodes, Schilder and Ellenbroek [2] developed a formulation in which the
floating frame is attached to a non-interface node. Preferably, the floating frame is placed in the
center of mass of the undeformed body. In the moving frame approach, the floating frame is
defined as a function of the absolute interface coordinates and therefore does not correspond to a
material point. Cardona [8] defined the floating frame as a weighted average of the variations of
the absolute boundary coordinates. The weights are a function of the proximity of the interface
nodes to the center of mass. Each of the three described reference conditions introduces a different
relationship between the coordinate sets and therefore yields a different transformation matrix.

The use of the Craig-Bampton modes [9] as model reduction basis is a common choice in absolute
interface formulations. The static Craig-Bampton modes correspond to unit displacement of the
boundary nodes. The additional internal modes are the eigenmodes of the constrained body, corre-



sponding to zero displacement at the boundary nodes. Therefore, the use of Craig-Bampton modes
simplifies the relation between the generalized coordinates of the floating frame and local elastic
coordinates and the absolute interface coordinates. However, combinations of the static Craig-
Bampton modes can describe rigid body motion and therefore must be combined with reference
conditions of the second approach.

The decision of which reference condition to implement is typically left to the experience of the
reader [6]. Comparing the reference conditions is troublesome as the derivations of the formula-
tions were performed using differing approaches and notations. To the best of the author’s knowl-
edge, no comparison between the accuracy of the reference conditions is available. Therefore, this
work presents a comparison between the three reference conditions, which might benefit the reader
in making a substantiated choice between the formulations. To this aim, the reference conditions
are considered as constraints on the elastic behaviour wherever possible, and the transformation
matrices are derived accordingly. The equations of motion in boundary points are derived and dif-
fer only in the transformation matrices. In this work, only the derivation results are shown, while a
future publication will present the exact derivations. To compare the accuracy and computational
efficiency of the methods, the formulations are implemented on a benchmark problem.

The remainder of this paper is structured as follows; section 2 presents the equations of motion in
absolute interface coordinates and the transformation matrices for the three reference conditions.
Section 3 discusses the expected difference in computational efficiency and stability. In section 4,
the derived methods are compared using a numerical validation problem.

2 DERIVATION RESULTS
In this section, first the derivation of the equations of motion for classic formulations is discussed.
Secondly, the transformation matrices for each reference condition are presented. Then, the trans-
formation matrices are utilized to obtain the equations of motion in absolute interface coordinates.

2.1 Equations of motion in absolute floating frame and local generalized coordinates
Consider an arbitrary body in a space described by a global Euclidean coordinate system connected
to point PO, as illustrated in Figure 1a. The body contains a material point i, to which a frame is
connected at point Pi. The position vector rrrOO

i and rotation matrix RRRO
i denote the position and

orientation of the material point relative to the global frame. The index notation of the position
vector rrrOO

i should be read as the position of Pi (subscript) relative to PO (second superscript)
expressed in the global frame (first superscript). Similarly, the rotation matrix RRRO

i is read as the
orientation of the frame attached to Pi (subscript) relative to the global frame (superscript).

To exploit the assumption of small elastic deformations, the trajectories of all material points on
the body are decomposed into a large global rigid body motion and small local elastic components.
To this end, a floating frame {Pj} is introduced. One can define the position of Pi as the sum of the
global position of the floating frame rrrOO

j and the local position of the material point rrr j j
i

rrrOO
i = rrrOO

j +RRRO
j rrr j j

i (1)

as illustrated in Figure 1a. The local position vector rrr j j
i can be partitioned as the position of the

material point Pi on the undeformed body xxx j j
i and the elastic displacement uuu j j

i

rrr j j
i = xxx j j

i +uuu j j
i . (2)

This is illustrated in Figure 1b, where the dotted shape indicates the undeformed body. Note that
the undeformed body is defined in accordance with the floating frame. Therefore, xxx j j

i remains
constant over time. As the elastic deformation can generally be assumed small, it can be expressed
as a linear combination of deformation shapes

uuu j j
i = ΦΦΦiηηη with ΦΦΦi =

[
φ1(xxx

j j
i ) φ2(xxx

j j
i ) . . . φM(xxx j j

i )
]

(3)



(a) An illustration of the position vectors and rota-
tion matrices used to describe material point i.

(b) The partitioning of the local position vector of
Pi in an undeformed and an elastic component.

Figure 1: A schematic illustration of the definition of the coordinates.

with ΦΦΦi being a set of M deformation shapes evaluated at xxx j j
i and ηηη being the corresponding time

dependent coordinates.

The generalized coordinates qqq used to describe the total system are the combination of the absolute
floating frame coordinates qqqOO

j and the local elastic coordinates ηηη

qqq =

[
qqqOO

j
ηηη

]
with qqqOO

j =

[
rrrOO

j
πππOO

j

]
(4)

with πππOO
j denoting the rotation angles of the floating frame with respect to the global frame. By

combining the time derivatives of the kinematic relations (1), (2) and (3) with the principle of
virtual work, one can obtain the equations of motion in terms of the generalized coordinates. A
detailed derivation of this is described in [2], with the resulting equation of motion[

R̂RR
O
j

]
MMM j

[
R̂RR

j
O

]
q̈qq+

[
R̂RR

O
j

]
CCC j

[
R̂RR

j
O

]
q̇qq+KKK jqqq = QQQO (5)

with MMM j, CCC j and KKK j being the local mass matrix, velocity dependent matrix and stiffness matrix
respectively, obtained using a linear finite element model of the body. Furthermore, QQQO denotes
the external forces and moments and

[
R̂RR

O
j

]
is the block diagonal matrix diag(RRRO

j ,RRR
O
j ,111) with 111

being an identity matrix.

2.2 Transformation to absolute interface coordinates
Due to the use of the mixed coordinate set, the equations of motion (5) combined with the kine-
matic constraint relations form a non-linear system. Thus, the system must be formulated using
Lagrange multipliers and requires specialized integration techniques [10]. Alternatively, the equa-
tions of motion can be expressed in absolute interface coordinates qqqOO

B containing the coordinates
of all boundary nodes relative to the global frame. The transformation of the equations of motion
to absolute interface coordinates qqqOO

B allows for simple assimilation of the constraints and results
in a system of ordinary differential equations. The transformation is particularly advantageous
in combination with Craig-Bampton modes, due to the straightforward relation between the local
elastic coordinates and absolute interface coordinates.

To achieve the aforementioned transformation, an explicit relation between the absolute floating
frame coordinates, local elastic coordinates and absolute interface coordinates must be obtained.
However, as combinations of the Craig-Bampton modes can describe rigid body motion, reference
conditions which introduce six constraints between the coordinate sets are required to remove the
rigid motion from the elastic deformation. To find the transformation matrices, the variation of (1)
and of the rotations

δqqq j j
B =

[
R̄RR j

O

]
δqqqOO

B −ΦΦΦrig,B

[
RRR j

O

]
δqqqOO

j with
[
R̄RRO

j

]
= diag(

[
RRRO

j
]
, . . . ,

[
RRRO

j
]︸ ︷︷ ︸

N times

) (6)



must be combined with the constraints imposed by the reference conditions. Here, ΦΦΦrig,B de-
notes the rigid body modes evaluated at the boundary nodes,

[
RRRO

j
]

is the block diagonal matrix
diag(RRRO

j ,RRR
O
j ) and N equals the number of interface points. δ denotes a variation and qqq j j

B contains
the coordinates of all boundary nodes relative to the floating frame.

As previously introduced, three well-established reference conditions of this type define the float-
ing frame as: (a) attached to a node close to the center of mass of the undeformed body, (b)
attached to a boundary node and (c) a weighted average of the motion of the boundary nodes.
Figure 2 illustrates these reference conditions, with the colored shapes representing bodies which
are connected at the interface points B1 and B2. The derivation of the transformation matrices for
each reference condition will be discussed sequentially below.

(a) The floating frame attached to
the node in the center of mass
of the undeformed body, with the
grey lines indicating a mesh.

(b) The floating frame attached to
the left interface point B1. For
clarity, the frame corresponding to
B1 is not shown.

(c) The floating frame defined as
a weighted average of the varia-
tions of the absolute interface co-
ordinates.

Figure 2: A schematic illustration of the reference conditions.

Firstly, we consider the reference condition as proposed by Ellenbroek and Schilder in [2] and
illustrated in Figure 2a, in which the floating frame is attached to the node in the center of mass
of the undeformed body. The rigid body motion is removed from the elastic component by con-
straining the elastic deformation in the floating frame to zero

ΦΦΦsCB, jδqqq j j
B +ΦΦΦiCB, jδηηη = 000. (7)

Here, ΦΦΦsCB, j and ΦΦΦiCB, j are the static and internal Craig-Bampton modes evaluated at the floating
frame respectively. The transformation matrices are derived by combining constraint (7) with (6)

δqqqOO
j

δqqq j j
B

δηηη

=


[
RRRO

j
]
(ΦΦΦsCB, jΦΦΦrig,B)

−1
ΦΦΦsCB, j

[
R̄RR j

O

] [
RRRO

j
]
(ΦΦΦsCB, jΦΦΦrig,B)

−1
ΦΦΦiCB, j(

111−ΦΦΦrig,B (ΦΦΦsCB, jΦΦΦrig,B)
−1

ΦΦΦsCB, j

)[
R̄RR j

O

]
−ΦΦΦrig,B (ΦΦΦsCB, jΦΦΦrig,B)

−1
ΦΦΦiCB, j

000 111

[
δqqqOO

B
δηηη

]
(8)

with 000 being a zero matrix and 111 being an identity matrix.

Secondly, consider the reference condition as proposed by Cardona in [7] and illustrated in Fig-
ure 2b in which the floating frame is defined as attached to a boundary node. As this can be
achieved by constraining the elastic deformation in the floating frame, this reference condition can
be recognised as a special case of the previous derivation. Let the floating frame be attached to
boundary node i from the total set of boundary nodes 1, ..., i, ...,N. The constraint which defines
zero elastic deformation at Bi is

ΦΦΦsCB,Biδqqq j j
B = 000 (9)

with ΦΦΦsCB,Bi being the static Craig-Bampton modes evaluated at boundary node i. As the static
Craig-Bampton modes correspond to unity displacement at the boundary nodes, one can write

ΦΦΦsCB,Bi =
[
000 . . . 111 . . . 000

]
(10)

corresponding to the set of boundary nodes 1, ..., i, ...,N. By combining the reference condition (9)



with (6), the transformation matrices corresponding to this condition can be derived as

δqqqOO
j

δqqq j j
B

δηηη

=


[
RRRO

j
][

000 . . . 111 . . . 000
][

R̄RR j
O

]
000(

111−ΦΦΦrig,B
[
000 . . . 111 . . . 000

])[
R̄RR j

O

]
000

000 111

[
δqqqOO

B
δηηη

]
. (11)

Finally, we consider the reference condition as proposed by Cardona in [8] and illustrated in Fig-
ure 2c in which the floating frame is taken as a weighted average of the variations of the absolute
interface coordinates δqqqOO

Bi
. Since the floating frame is not attached to a node, the reference con-

dition is not enforced by constraining the elastic deformation, but by the relation imposed by the
weighted average

δqqqOO
j =

N

∑
i=1

wiδqqqOO
Bi

(12)

with wi being the weight assigned to the ith boundary node. The weights are defined based on the
position of the interface points with respect to the center of mass. Combining (12) with (6) allows
one to derive the transformation matricesδqqqOO

j

δqqq j j
B

δηηη

=


[
RRRO

j
][

www
][

R̄RR j
O

]
000(

111−ΦΦΦrig,B
[
www
])[

R̄RR j
O

]
000

000 111

[
δqqqOO

B
δηηη

]
(13)

with [
www
]
=
[
w1111 w2111 . . . wN111

]
. (14)

2.3 Equations of motion in absolute interface coordinates
The transformation matrices for all three considered reference conditions (8), (11) and (13) are of
the structure δqqqOO

j

δqqq j j
B

δηηη

=


[
RRRO

j
]

TTT j1

[
R̄RR j

O

] [
RRRO

j
]

TTT j2

TTT B1

[
R̄RR j

O

]
TTT B2

000 111

[
δqqqOO

B
δηηη

]
= TTT

[
δqqqOO

B
δηηη

]
. (15)

Here TTT j1 and TTT j2 transform the absolute boundary coordinates and the local elastic coordinates
corresponding to the internal Craig-Bampton modes to absolute floating frame coordinates, and
TTT B1 and TTT B2 transform the same coordinates to the local boundary node coordinates. Since the
transformation matrices are of the same structure for each reference condition, the equations of
motion in absolute interface coordinates can be obtained by substituting (15) in (5),

TTT T MMMOTTT q̈qqOO
B +TTT T (MMMOṪTT +CCCOTTT

)
q̇qqOO

B +TTT T KKK jqqq j j
B = TTT T QQQO. (16)

Here MMMO is the global mass matrix
[
R̂RR

O
j

]
MMM j

[
R̂RR

j
O

]
and CCCO denotes the global velocity dependent

matrix
[
R̂RR

O
j

]
CCC j

[
R̂RR

j
O

]
. As such, simulations using the different reference conditions can be per-

formed solely by changing the transformation matrices.

3 DISCUSSION OF THE TRANSFORMATION MATRICES
As the differences between the formulations are due to transformation matrices, comparing them
can give insight into expected computational efficiency differences. Implementing the formula-
tions as presented so far requires one to update the rigid body modes and therefore the transfor-
mation matrices at every time step. Additionally, both the center of mass and weighted average



approaches require re-evaluation of an inverse term at every time step. However, the floating
frame formulation is typically used for problems in which the elastic deformation can be assumed
small with respect to the dimensions of the body (rrr j j

Bi
≈ xxx j j

Bi
). Applying the assumption of small

deformations results in constant transformation matrices for all three reference conditions.

It should be noted that the definition of the floating frame influences the size of the elastic defor-
mation and therefore the validity of the assumption of small deformations. Figure 3 illustrates how
the size of the largest elastic displacement varies between the reference conditions. The solid line
represents the deformed body, while the frame and the dashed line represent the floating frame and
the corresponding undeformed body. The grey arrows indicate the largest elastic displacement.

(a) The floating frame attached
to the left boundary node.

(b) The floating frame de-
fined as a weighted average of
the variations of the absolute
boundary coordinates.

(c) The floating frame attached
to the node in the center of mass
of the undeformed body.

Figure 3: A schematic illustration of the dependence of the largest elastic deformation (grey ar-
rows) on the definition of the floating frame (black frame). The solid line shows the deformed
body which contains a boundary node at each end. The dashed line shows the undeformed body.

Defining the floating frame as attached to an interface point is expected to result in the largest
elastic deformation terms, as illustrated in Figure 3a. Therefore, this formulation is likely the first
to require updating the rigid modes at every time step or refining the number of bodies used to
describe the problem, both of which increase the computational cost.

In the weighted average approach, the size of the elastic deformation depends strongly on the main
deformation shapes occurring in the system. For the example, while Figure 3 shows differences
in elastic deformation between the weighted average and center of mass approach, a different
deformation shape (e.g. a first bending mode) might yield an equally large elastic deformation for
both approaches. Therefore, the validity of the small elastic deformations assumption can vary
greatly between problems. Furthermore, it is important to realize that the trajectory of the floating
frame has no physical meaning in the weighted average approach. In contrast, the trajectory of the
floating frame in the other two approaches represents the trajectory of a node of the body.

4 VALIDATION
To investigate the accuracy of the formulations for different reference conditions, (16) is imple-
mented on the three dimensional slider crank benchmark problem. The slider crank consists of a
rigid crank, a flexible connector and a slider, as illustrated in Figure 4. The crank has a length of
0.15 m and is positioned at a distance of 0.1 m (d) along the y-axis. It is capable of rotating in the
yz-plane. The connector has a length of 0.3 m and a circular cross-section with diameter of 6 mm.
It is modelled with a density of 8780 kg/m3, a Young’s modulus of 200 GPa and a shear modulus
of 77 GPa. The slider has a mass equal to half the weight of the connector and can slide long
the x-axis only. In the initial configuration, the system is stationary and the crank is positioned
parallel to the positive z-axis. The angular velocity of the crank (ωcr) is linearly increased from 0
to 200 rad/s over a duration of 0.1 seconds, as illustrated in Figure 5. The normalized midpoint
deflection of the connector is used to compare the simulation results. The deflection is defined as
the perpendicular displacement of the midpoint of the connector with respect to the straight line



Figure 4: An illustration of the 3D slider crank
system with a flexible connector.

Figure 5: The prescribed angular velocity.

that connects the outer nodes of the connector and normalized by the length of the connector.

Figure 6 and 7 depict the deflection results over the first 0.1 seconds when the connector is defined
using four and two bodies respectively. In both cases, no internal modes were included. For the in-
terface point approach, the floating frame is defined in the node which couples the connector to the
slider (right). The solid line in both figures represents the result of a non-linear FEM simulation1

which can be considered as reference.

If the connector is defined by four bodies, the deflection obtained with each reference condition
closely approximates the FEM simulation result. As anticipated, reducing the number of bodies
to two yields less accurate deflections, which is particularly noticeable around the 0.9 seconds
mark in Figure 7. For the center of mass and weighted average approaches, the result still closely
represents the FEM simulation. However, for a floating frame defined in the right boundary node,
the resulting deformation deviates more strongly from the reference.

In practice, refining an arbitrary body into multiple bodies is difficult. Therefore, the simula-
tion results for a connector consisting of one body are of interest. In contrast to the simulations
with multiple bodies, the static Craig-Bampton modes cannot accurately represent the dynamic
behaviour when one body is used. Therefore, ten internal modes have been included to obtain the
results shown in Figure 8. Further deviations from the FEM simulation are visible for all reference
conditions. For the center of mass and weighted average approaches, the results still accurately
represent the phase, although the amplitude starts to deviate around 0.05 seconds. However, for
the interface point approach significant differences in both amplitude and phase are visible.

Based on the results, it is observed that defining the floating frame in an interface point performs
least accurately, which is consistent with the expectation that the elastic deformation is the largest

1The simulation was performed in Abaqus 2021 HotFix 6 using the updated Lagrangian approach, 720 quadratic
volume elements (quadratic bricks) and implicit Hilber-Hughes-Taylor time integration.
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Figure 6: The normalized midpoint deflection obtained by nonlinear FEM and using each reference condi-
tions. The connector is modelled with four bodies and no internal Craig-Bampton modes.



0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

−0.015

−0.010

−0.005

0.000

0.005

N
or

m
al

iz
ed

de
fle

ct
io

n
[-

]
Non-linear FEM
Undeformed CoM
Weighted average
Interface point

Figure 7: The normalized midpoint deflection obtained by nonlinear FEM and using each reference condi-
tions. The connector is modelled with two bodies and no internal Craig-Bampton modes.
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Figure 8: The normalized midpoint deflection obtained by nonlinear FEM and using each reference condi-
tions. The connector is modelled with one body and ten internal Craig-Bampton modes.

for this reference condition. Although including internal modes is necessary for a connector mod-
elled with one body, the simulation is still fast due to the reduction in the number of bodies. The
remaining two reference conditions are comparable in terms of accuracy.

5 CONCLUSIONS
Floating frame formulations employ a mixed coordinates set comprising the absolute floating
frame coordinates and local elastic coordinates. Due to the mixed coordinates, Lagrange mul-
tiplies are required to implement the constraints. Nonlinear constraint equations can be avoided by
transforming the floating frame formulation to absolute boundary coordinates. However, to obtain
a unique transformation, reference conditions which eliminate the rigid motion from the elastic
movement are required. If the reduction set can describe rigid body motion, e.g. Craig-Bampton
modes, the reference conditions take the form of six position level constraints between the abso-
lute boundary and floating frame coordinates. Three reference conditions of this type have been
considered: defining the floating frame in the node at the center of mass, defining the floating
frame as attached to an interface node, and defining the floating frame as a weighted average of
the variations of the absolute interface coordinates.

This work has demonstrated that for each of these reference conditions, a transformation matrix
with the same general shape can be obtained. All transformation matrices are constant if small
elastic deformation is assumed. The accuracy of the reference conditions has been assessed by
simulating a three dimensional slider crank. The center of mass and weighted average approaches
yield similar results which closely represent the reference non-linear FEM simulation. Defining
the floating frame as attached to an interface point yields noticeably larger deviations from the



desired result as well as phase discrepancies when the connector is modelled using one body. This
behaviour is expected, as attaching the floating frame to a boundary node is likely to result in
larger elastic deformations compared to the other reference conditions and thus would be the first
to violate the assumption of small elastic deformations.

This work offers insight into the resemblances and disparities among the three considered refer-
ence conditions. Through careful consideration, the results indicate that the reference conditions
which define the floating frame as attached to the center of mass and as weighted average of the
variations of the absolute boundary coordinates are preferable to use. These reference conditions
are comparable in terms of computational efficiency, but offer more accurate results compared to
attaching the floating frame to a interface node.
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